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Abstract. The primitive element theorem is an important theorem in field theory, a branch of
abstract algebra. It focuses on finite-degree extensions and determines when such extensions are
simple. In this paper, we will introduce necessary definitions and propositions, along with concrete
examples, to build up toward the theorem. Briefly, the theorem states that a finite extension is simple
if and only if there are finitely many intermediary fields between the original and the extended field.

1. Introduction

The primitive element theorem has fundamental importance in field theory and Galois theory.
It helps characterizing finite degree extensions that can be generated by a single element, which
is thus named as a primitive element. Meanwhile, such extensions are called simple extensions.
The theorem facilitates our analysis on the structural properties of such fields.

The history of the Main Theorem dates back to 1831 when mathematician Évariste Galois first
sketched a proof of the classical primitive element theorem. The theorem states as follows:

Theorem 1.1.
Every separable field extension of finite degree is simple.

The proof wasn’t complete but could be easily finished by a theorem of Joseph-Louis Lagrange
from 1771. Galois then extensively used the theorem for the development of Galois theory and
fundamental theorem of Galois theory. Later in 1910, mathematician Ernst Steinitz proposed a
modern version of the theorem, which he then named as the theorem of the intermediate fields.
This is the Main Theorem we will focus on, and it states as follows:

Main Theorem. Primitive Element Theorem(Steinitz,1910 [7]):
Let F and K be arbitrary fields, and let K be an extension of F of finite degree. Then there exists an element
α ∈ K such that K = F(α) if and only if there are finitely many fields L with F ⊆ L ⊆ K.

In fact, using the fundamental theorem of Galois theory, the latter theorem leads to the former.
The theorem can be useful in implication as it determines when a ‘generator’ of a field exists. To
better illustrate the theorem, we provide an example here:

Example 1.2. Let F = R and K = C. Since every complex number can be uniquely expressed by
a + bi for a, b ∈ R, we see that (1, i) is a basis for C over R, i.e. the dimension of C as a vector
space over R is 2. Hence, there is no intermediary field between R and C. By theorem, C is a
simple extension. Indeed, C = R(i), where i ∈ C.

In this paper, we will give a proof of the Main Theorem and dig into possible applications.
The structure of the paper is as follows. In Section 2 we give the definitions of extensions,
extension degrees, and minimal polynomial, with examples. We also state necessary theorems,
propositions, and lemmas. In Section 3 we elaborate on the proof of the Main Theorem. Finally,
in Section 4, we focus on applications and some original examples.
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2. Background

We assume the reader is familiar with definitions of field and extension field as introduced
in class as well as in [2, Chapter 20]. Throughout, it is expected that the reader has preliminary
knowledge of abstract algebra.

Given a field F and an extension E over F. The primary theorem addresses the conditions
under which F is considered a simple extension of E. Before investigating further, let’s define
terms and provide necessary building blocks.

Definition 2.1. Let E be an extension field of a field F and let a ∈ E. We call a algebraic over F if a
is the zero of some nonzero polynomial in F[x]. Otherwise a is transcendental over F.

We now give one example to each type of the element.

Example 2.2. Let F = Q and E = R.
√
2 ∈ R is algebraic over Q as it is the zero of x2 − 2 ∈ Q[x].

Example 2.3. Let F = Q and E = C. π (Lindemann, 1882 [4]) and e (Hermite, 1873 [3]) are proved
to be transcendental over Q.

Definition 2.4. An extension E of F is called an algebraic extension of F if every element of E is
algebraic over F. Otherwise, E is called a transcendental extension of F. Furthermore, E is called a
simple extension of F if ∃ a ∈ E such that E = F(a). Such a is a primitive element defined after the
Main Theorem.

Example 2.5. Q(
√
5) = {s +

√
5t|s, t ∈ Q} is an extension field, specifically a simple extension

field, over Q as ∀ s +
√
5t is a zero of x2 − 2sx + s2 − 5t2 ∈ Q[x]. R and C are transcendental

extensions of Q.

Theorem 2.6 (as stated in Thm 21.2 [2]). If a is algebraic over a field F, then there is a unique monic
irreducible polynomial p(x) in F[x] such that p(a) = 0.

Example 2.7. Following example 2.2, p(x) = x2 − 2 = 0 for x =
√
2. p(x) is unique by theorem

2.6.

Definition 2.8. Such polynomial mentioned in theorem 2.6 is the minimal polynomial for a over F.

Definition 2.9. Let E be an extension field of a field F. We say that E has degree n over F and
write [E : F] = n if E has dimension n as a vector space over F. If [E : F] is finite, E is called a finite
extension of F; otherwise, we say that E is an infinite extension of F.

Example 2.10. We first refer to a result stated in Thm 20.3 [2]:
Let F be a field and let p(x) ∈ F[x] be irreducible over F. If a is a zero of p(x) in some extension E

of F, then F(a) is isomorphic to F(x)/⟨p(x)⟩. Furthermore, if deg p(x) = n, then every member of
F(a) can be uniquely expressed in the form

cn−1a
n−1 + cn−2a

n−2 + · · ·+ c1a+ c0,

where c0, c1, . . . , cn−1 ∈ F.
Now, let a be algebraic over F. By theorem 2.6, there is a unique minimal polynomial for a over F.
From the result above, we know that {1, a, . . . , an−1} is a basis for F(a) over F. Thus, [F(a) : F] = n.
On the other hand, C is an infinite extension of Q.
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Theorem 2.11 (as stated in Thm 21.4 [2]). If E is a finite extension of F, then E is an algebraic extension
of F.

Proposition 2.12. ([8, p.18]) Suppose K/F is a finite-degree extension and F is finite. Then K is a simple
extension of F.

Theorem 2.13 (as stated in Thm 21.3 [2]). Let a be algebraic over F, and let p(x) be the minimal
polynomial for a over F. If f(x) ∈ F[x] and f(a) = 0, then p(x) divides f(x) in F[x].

Lemma 2.14 ([5]). Let m(x) be the minimal polynomial of α over F. Then degF(α) = deg(m(x)) =

[F(α) : F].

3. Main Theorem

Now that we have introduced all necessary definitions and related theorems, we are ready to
prove the Main Theorem.

Main Theorem. Primitive Element Theorem (Steinitz, 1910 [7])
Let F and K be arbitrary fields, and let K be an extension of F of finite degree. Then there exists an element
α ∈ K such that K = F(α) if and only if there are finitely many fields L with F ⊆ L ⊆ K.

We follow the proof given in [6].

Proof. Let F be a field and K an extension over K such that [K : F] is finite.

⇒:
Suppose K = F(α) for some α ∈ K and L is an intermediary field of K/F. K is a finite extension,

so L is also a finite extension. By theorem 2.11, K, L are algebraic extensions. Therefore, by
theorem 2.6, α has the minimal polynomial m(x) ∈ F[x] and m ′(x) ∈ L[x]. Now, m ′(x) is the
minimal polynomial for α over L and m(x) ∈ F[x] ⊆ L[x] with m(α) = 0. By theorem 2.13,
m ′(x) | m(x) in L[x].

Now let L ′ be the field generated over F by the coefficients of m ′(x). Then L ′ ⊆ L, and the
minimal polynomial for α over L ′ is still m ′(x). Therefore, by lemma 2.14,

[K : L] = deg(m ′(x)) = [K : L ′]

Together with L ′ ⊆ L, which we’ve shown above, this implies that L ′ = L. Now, every inter-
mediary field is generated over F by the coefficients of some monic polynomial dividing m(x).
Since the polynomial m(x) has only finitely many monic factors, we conclude that there can be
only finitely many subfields of K containing F.

⇐
Suppose K/F has finite degree and finitely many intermediary fields. If F is finite, then by

proposition 2.12, K is a simple extension of F. Thus, assume F (and hence also K) is infinite.
Let α1, α2, . . . , αn be a basis for K over F. Then K = F(α1, α2, . . . , αn). We will demonstrate the
implication via induction.

Base case: K = F(ε) for ε ∈ K is a simple extension by definition.
Inductive step: ∀ K = F(α1, . . . , αi, β, γ) : ∃ε ∈ K such that K = F(α1, . . . , αi, ε)

Assume K ′ = F(α1, . . . , αi, β+xγ) for ∀x ∈ F: since F is infinite and there are only finitely many
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intermediate fields, ∃ distinct x, y ∈ F such that F(α1, . . . , αi, β+ xγ) = F(α1, . . . , αi, β+ yγ). Call
this field L. Then L ⊆ F(α1, . . . , αi, β, γ). Now β + xγ, β + yγ ∈ L ⇒ (β + xγ) − (β + yγ) =

(x − y)γ ∈ L. As x ̸= y, x − y has its multiplicative inverse in L, so γ = (x − y)−1(x − y)γ ∈ L.
Clearly also, β = (β + xγ) − xγ ∈ L. Thus, F(α1, . . . , αi, β, γ) ⊆ L ⇒ L = F(α1, . . . , αi, β, γ). Now
letting ε = β+ xγ, we see that

K ′ = F(α1, . . . , αi, ε) = L = F(α1, . . . , αi, β, γ) = K

Therefore, the theorem holds. □

4. Applications and Examples

The Main Theorem has implications in Algebraic Number Theory, Coding Theory and Cryp-
tography, etc. It also helps with solving polynomials and is essential in Galois Theory. In addi-
tion, it gives birth to the following corollary:

Corollary 4.1 (as stated in Thm 21.6 [2]). If F is a field of characteristic 0, and a and b are algebraic
over F, then there is an element c in F(a, b) such that F(a, b) = F(c).

We now see an example illustrating this result.

Original Example. Let F = Q and E = Q(
√
a,

√
b) for a, b ∈ Z, a ̸= b. Q is a field of characteristic

0, and Q(
√
a,

√
b) is a field extension of degree 4, with {1,

√
a,

√
b,

√
ab} being the basis of the

vector space. Meanwhile, consider x2 − a = 0 and x2 − b = 0.
√
a,

√
b are algebraic over F. Then,

by the corollary, there is an element c in Q(
√
a,

√
b) such that Q(

√
a,

√
b) = Q(c).

Claim that c =
√
a +

√
b. Then Q(c) ⊆ Q(

√
a,

√
b), and c2 = a + b + 2

√
ab, c3 = a

√
a + 3b

√
a +

3a
√
b+ b

√
b. Solving the linear equations, we know that

√
a =

1

2b− 2a
(c3 − (3a+ b)c)

√
b =

1

2a− 2b
(c3 − (a+ 3b)c)

This further implies that Q(
√
a,

√
b) ⊆ Q(c), so E = Q(

√
a+

√
b).

The following is an example for the finite field. Finite field has nonzero characteristic, so we
refer to the Main Theorem.

Original Example. Let F = GF(2) = Z/2 = {0, 1} with addition and multiplication defined as
follows:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

Let E = GF(8) = F2[x]/p(x) = {0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1} with operations defined
by addition/multiplication modulo p(x), where p(x) = x3 + x+ 1 is an irreducible polynomial in
Z2[x]. Readers may check on their own that this is indeed a field. Since E is finite, there must be
finite number of intermediary fields between F and E. Now, by the Main Theorem, E is simple.
Indeed, we claim that E = F(x) because ∀e ∈ GF(8)\GF(2): e is a polynomial generated by only 1

and x.

Finally we provide a nonexample [1]. It fails because there are infinitely many intermediary
fields.
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Example 4.2. Consider K = Fp(x, y), the field of rational functions in x, y over the finite field

with p elements, and the extension L = K(x
1
p , y

1
p ). An infinite number of intermediary fields

can be given by K(ax
1
p + y

1
p ) for ∀a ∈ K. This can be proven true by contradiction. Suppose

L ′ = K(ax
1
p + y

1
p ) = K(bx

1
p + y

1
p ) for a, b ∈ K and a ̸= b. Then, (a − b)x

1
p ∈ L ′ ⇒ (a − b)−1(a −

b)x
1
p = x

1
p ∈ L ′, and also y

1
p ∈ L. Thus, L ′ = K(x

1
p , y

1
p ) = L, so ax

1
p + y

1
p is a primitive element,

which can’t be true.
Now by the Main Theorem, L can’t be a simple extension. Indeed, L is an extension of degree p2

over K, so if it were simple, there must exist an element of degree p2. However, ∀α ∈ L: αp ∈ K,
i.e. there is no primitive element.
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